Subtractive Clustering Based RBF Neural Network Model for Outlier Detection

نویسندگان

  • Peng Yang
  • Qingsheng Zhu
  • Xun Zhong
چکیده

Outlier detection has many important applications in the field of fraud detection, network robustness analysis and intrusion detection. Some researches have utilized the neural network to solve the problem because it has the advantage of powerful modeling ability. In this paper, we propose a RBF neural network model using subtractive clustering algorithm for selecting the hidden node centers, which can achieve faster training speed. In the meantime, the RBF network was trained with a regularization term so as to minimize the variances of the nodes in the hidden layer and perform more accurate prediction. By defining the degree of outlier, we can effectively find the abnormal data whose actual output is serious deviation from its expectation as long as the output is certainty. Experimental results on different datasets show that the proposed RBF model has higher detection rate as well as lower false positive rate comparing with the other methods, and it can be an effective solution for detecting outliers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Outlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means

One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...

متن کامل

A hybrid intelligent method for three-dimensional short-term prediction of dissolved oxygen content in aquaculture

A precise predictive model is important for obtaining a clear understanding of the changes in dissolved oxygen content in crab ponds. Highly accurate interval forecasting of dissolved oxygen content is fundamental to reduce risk, and three-dimensional prediction can provide more accurate results and overall guidance. In this study, a hybrid three-dimensional (3D) dissolved oxygen content predic...

متن کامل

Speaker Identification based on Hybrid Clustering and Radial Basis Function

Speaker identification is the computing task to identify an unknown identity based on the voice. A good speaker identification system must have a high accuracy rate to avoid invalid identity. Despite of last few decades’ efforts, accuracy rate in speaker identification is still low. In this paper, we propose a hybrid approach of unsupervised and supervised learning i.e. subtractive clustering a...

متن کامل

Combination of Subtractive Clustering and Radial Basis Function in Speaker Identification

Speaker identification is the process of determining which registered speaker provides a given utterance. Speaker identification required to make a claim on the identity of speaker from the Ns trained speaker in its user database. In this study, we propose the combination of clustering algorithm and the classification technique – subtractive and Radial Basis Function (RBF). The proposed techniq...

متن کامل

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant’s risk factors was used.  First,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCP

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009